9.10 const Objects and const Member
Functions (cont.)

A constructor mustbe allowed to modify an object so that the
object can be initialized properly.

A destructor must be able to perform its termination
housekeeping chores before an object’s memory is reclaimed
by the system.

Attempting to declare a constructor or destructor const is a
compilation error.

The “constness” of a const object is enforced from the
time the constructor completes initialization of the object until
that object’s destructor 1s called.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.10 const Objects and const Member
Functions (cont.)

Using const and Non-const Member Functions

* The program of Fig. 9.16 uses class T1me from Figs. 9.4-9.5,
but removes const from function printStandard’s
prototype and definition so that we can show a compilation
error.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

I // Fig. 9.16: fig09_16.cpp
2 // const objects and const member functions.
3 #include // include Time class definition
4
5 int main(Q)
6 {
7 Time wakeUp(©, ,); // non-constant object
8 const Time noon(, 0,); // constant object
9
10 // OBJECT MEMBER FUNCTION
11 wakelUp.setHour(); // non-const non-const
12
13 noon.setHour(12); // const non-const
14
15 wakelUp.getHour(); // hon-const const
16
17 noon.getMinute(); // const const
18 noon.printUniversal(); // const const
19
20 noon.printStandard(); // const non-const

21 } // end main

Fig. 9.16 | const objects and const member functions. (Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Microsoft Visual C++ compiler error messages:

C:\examples\ch09\Fig09_16_18\fig09_18.cpp(13) : error (C2662:

'"Time: :setHour' : cannot convert 'this' pointer from 'const Time' to

"Time &'

Conversion loses qualifiers

C:\examples\ch09\Fig09_16_18\fig09_18.cpp(20) : error (C2662:

'"Time: :printStandard' : cannot convert 'this' pointer from 'const Time' to

"Time &'

Conversion loses qualifiers

Fig. 9.16 | const objects and const member functions. (Part 2 of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.11 Composition: Objects as Members of
Classes

 AnAlarmClock object needs to know when it’s supposed

to sound its alarm, so why not include a T1me object as a
member of the AlarmClock class?

 Such a capability is called composition and is sometimes

referred to as a /as-a relationship—a class can have obyjects
of other classes as members.

* The next program uses classes Date (Figs. 9.17-9.18) and
Employee (Figs. 9.19-9.20) to demonstrate composition.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 9.9

A common form of software reusability i1s composition,
in which a class has objects of other types as members.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 9.10

Data members are constructed in the order in which
they’re declared in the class definition (not in the order
they’re listed in the constructor’s member initializer list)
and before their enclosing class objects (sometimes
called host objects) are constructed.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

OoOo~NOTUnNHh WN=

10
11
12
13
14
15
16
17
18
19
20
21
22

// Fig. 9.17: Date.h

// Date class definition; Member functions defined in Date.cpp
#1fndef

#define

class Date

{

public:
static const unsigned int = ; // months in a year
explicit Date(int = 1, int = 1, int =); // default constructor

void print() const; // print date in month/day/year format
~Date(); // provided to confirm destruction order
private:
unsigned int month; // 1-12 (January-December)
unsigned int day; // 1-31 based on month
unsigned int year; // any year

// utility function to check if day is proper for month and year
unsigned int checkDay(int) const;
}; // end class Date

#endif

Fig. 9.17 | Date class definition.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

OoOo~NOTUnNHh WN=

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

// Fig. 9.18: Date.cpp

// Date class member-function definitions.
#include <array>

#include <iostream>

#include <stdexcept>

#include // include Date class definition
using namespace std;

// constructor confirms proper value for month; calls
// utility function checkDay to confirm proper value for day
Date::Date(int mn, 1int dy, int yr)

{
if (. mn > && mn <=) // validate the month
month = mn;
else
throw invalid_argument();

year = yr; // could validate yr
day = checkDay(dy); // validate the day

// output Date object to show when its constructor is called
cout << ;
print();
cout << endl;
} // end Date constructor

Fig. 9.18 | Date class member-function definitions. (Part | of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

// print Date object in form month/day/year
void Date::print() const
{

cout << month << << day << << year;
} // end function print

// output Date object to show when its destructor is called
Date: :~Date()
{
cout << ;
print();
cout << endl;
¥ // end ~Date destructor

Fig. 9.18 | Date class member-function definitions. (Part 2 of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

// utility function to confirm proper day value based on
// month and year; handles leap years, too

unsigned 1int Date::checkDay(int testDay) const

{

static const array< int, monthsPerYear + | > daysPerMonth =

{ 3 ’ ’ ¥ ’ ’ y ’ L H ’ ’ } ;

// determine whether testDay is valid for specified month
if (testDay > && testDay <= daysPerMonth[month])
return testDay;

// February 29 check for leap year

if (month == ” && testDay == && (year % == ||
(year % == && year % =) D))
return testDay;

throw invalid_argument()
} // end function checkDay

Fig. 9.18 | Date class member-function definitions. (Part 3 of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

—
CcCwVwO~NONUNDAWN=

NINNMNN == - o e e e e e
WN=0OVE~N0UhWN=

24

// Fig. 9.19: Employee.h

// Employee class definition showing composition.
// Member functions defined in Employee.cpp.
#1ifndef

#define

#include <string>
#include // include Date class definition

class Employee
{
public:
Employee(const std::string &, const std::string &,
const Date &, const Date &);
void print() const;
~Employee(); // provided to confirm destruction order
private:
std::string firstName; // composition: member object
std::string TastName; // composition: member object
const Date birthDate; // composition: member object
const Date hireDate; // composition: member object
}; // end class Employee

#endif

Fig. 9.19 | EmpTloyee class definition showing composition.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

OoOo~NOTUnNHh WN=

10
11
12
13
14
15
16
17
18
19
20
21

// Fig. 9.20: Employee.cpp

// Employee class member-function definitions.
#include <iostream>

#include // Employee class definition
#include // Date class definition

using namespace std;

// constructor uses member initializer list to pass initializer
// values to constructors of member objects
Employee: :Employee(const string &first, const string &last,
const Date &dateOfBirth, const Date &dateOfHire)
: firstName(first), // initialize firstName
TastName(last), // initialize lastName
birthDate(dateOfBirth), // initialize birthDate
hireDate(dateOfHire) // initialize hireDate

{
// output Employee object to show when constructor is called
cout <<
<< firstName << << lastName << endl;

} // end Employee constructor

Fig. 9.20 | Employee class member-function definitions. (Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// print Employee object
void Employee::print() const

{
cout << TastName << << firstName << ;
hireDate.print();
cout << ;

birthDate.print();
cout << endl;
} // end function print

// output Employee object to show when its destructor is called
Employee: :~Employee()
{
cout <<
<< lastName << << firstName << endl;
} // end ~Employee destructor

Fig. 9.20 | Employee class member-function definitions. (Part 2 of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.11 Composition: Objects as Members of
Classes (cont.)

Emp loyee Constructor’s Member Initializer List

* The colon (:)following the constructor’s header (Fig. 9.20,
line 12) begins the member initializer list.

« The member initializers specify the Emp 1oyee constructor
parameters being passed to the constructors of the string
and Date data members.

« Again, member initializers are separated by commas.
« The order of the member initializers does not matter.

* They’re executed in the order that the member objects are
declared in class Employee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

